
Week 13 – Wednesday

 What did we talk about last time?
 Limits of parallelism
 Amdahl's Law
 Gustafson's Law

 Timing in distributed environments
 Clock synchronization
 Lamport timestamps
 Vector clocks

 If you want to get a file from a web server, you can go to a URL
and make an HTTP request

 Unfortunately, if that server is down or unreachable, you can't get
the file

 For this reason, distributed systems are often used to store data
 A key feature of distributed data storage is replication, keeping

multiple copies of the same data
 Replication avoids a single point of failure
 If done correctly, replication can also do load balancing, improving

performance by providing multiple sources for data

 The Google File System (GFS) is a distributed storage system
 GFS was designed to store Google's internal data, like the

data structures used for PageRank
 Files are often large, so they're broken into chunks
 Chunks are stored on chunkservers as regular files
 A master server stores a table mapping file chunks to their

locations

 Each chunk has a primary
chunkserver as well as replicas

 The chunks are identical, but the
primary chunkserver is the only
place where the chunk can be
modified
 It propagates changes to the other

chunkservers
 This redundancy makes writing to

GFS slower, even though reading is
relatively fast

 The master server periodically
sends messages to the
chunkservers to get their current
status

 GFS was designed by Google for its own purposes
 It uses a central server
 Servers keep information about each other

 What if we have no idea what servers are going to be in the
network?

 Distributed hash tables (DHT) are an approach for mapping
arbitrary objects to arbitrary servers

 DHTs are a way to organize a peer-to-peer network to avoid
query flooding

 Chord was one of the first algorithms for a DHT,
introduced in 2001

 Each node has a unique identifier (often its IP
address) that's hashed to provide a location in a
circle
 If the hash is n bits long, the DHT can support up to

2n nodes
 Most locations in the circle are empty
 Each node has a "finger table," tracking

successor elements in increasing powers of 2
away on the circle
 If the power of 2 node is missing, it tracks the next

non-missing node
 The example on the right is only for 25 = 32

nodes

 When a file is added, it's hashed
 Whichever node has that hash value (or is its

successor) is the location of that file
 On the right, node 6 is looking for a file at location

19 (the successor of 18)
 It looks at 6 + 8 = 14, which doesn't exist but has a

successor of 16
 Then it looks at 16 + 2 = 18, which doesn't exist but

has a successor of 21
 Node 21 is where the file is supposed to be

 The details get a little more complex, but the
practical result is that a file can be found with
O(log n) requests, where n is the size of the
network

 Replication is done by caching files at nodes that
were part of the lookup to find the file

 At a high level, you can think of distributed systems as state
machines

 The system contains many variables with different values that
change over time
 The idea is broader than a finite state machine, since the system is

more complex than having a single state
 In a distributed system, different nodes could have different

internal representations of these values
 If the nodes agree on a state variable's value, they have

consensus

 Reaching consensus is the goal of many distributed protocols
 To reach consensus, a protocol must have three properties:
 Termination: Every correct (non-failing) process will eventually decide on

a value
 Integrity: If every correct process proposes the same value, any correct

process must decide that value
 Agreement: All correct processes decide the same value

 Examples
 In GFS, a consensus protocol could tell any node whether a particular file

was on a particular node
 In NTP, nodes will be able to agree on synchronized time

 However, processes do fail in distributed systems
 Failure could mean making some error, crashing, going into

an infinite loop, or losing connection to the network
 Processes could even be malicious, trying to undermine the system

 Even in the face of (many?) failures, we'd like the distributed
system to reach consensus

 A common analogy used to describe this problem is the
Byzantine generals problem

 The Byzantine generals problem imagines three generals
stationed around a large city
 Only if all three generals decide to attack, they can defeat the city
 If all three generals decide to retreat, they can retreat with minimal

casualties
 But if some attack and some retreat, they're all going to get slaughtered

 The generals exchange messages with each other to see what
they want to do

 What if one general tells A that he's going to retreat and B that
he's going to attack?
 A will decide to retreat but B will go ahead and attack

 A different (but equivalent) version of the Byzantine generals
problem imagines:
 One general is the commander who decides what to do
 The other two are lieutenants who check with each other to make sure

that they got the same message from the commander
 What if there's one bad general?
 A bad commander could send retreat to one lieutenant and attack to the

other
 A bad lieutenant could receive attack from the commander but send

retreat to the other lieutenant
 A good lieutenant couldn't distinguish between those two situations

 Consensus is hard
 Failing processes can mess things up for correct processes
 Because there's limited information, a process can appear to be

correct to one part of the system and failing to another
 A Byzantine failure is exactly this kind
 There's conflicting information, and it's impossible to determine

what's reliable

 It's not an accident that the number of
generals chosen is three

 If strictly less than 1/3 of the nodes are
failing, it's possible to achieve consensus

 If we extend the problem to four generals
(three lieutenants), then generals who are
working can decide on a consensus using
majority rule

 Even a bad commander who issues
confusing orders won't mess up the system

 However, knowing what the consensus is
doesn't tell us which nodes are failing

 Also, this 1/3 limit depends on synchronous
communication

 Consensus is a pretty high bar
 Practical Byzantine fault tolerance (PBFT) tries to

make a workable system with consistency among
nodes without requiring consensus
 A client asks a primary process for some data
 The primary process asks replicas for the data
 The client considers the majority response to be correct

after getting enough responses
 It works because
 Messages are cryptographically signed
 Messages are numbered so that old messages won't be

reused
 Responses have a time limit

 We assume that less than 1/3 of the processes are
faulty, meaning that if we get messages from more
than 1/3 of the processes that agree, we assume the
response is good

 Blockchains are a form of distributed ledger
 Unlike banks, which are centralized authorities for transactions

that have occurred at the banks, blockchains try to record
transactions in a distributed way with no central authority

 Although similar ideas existed before, blockchains as we know
them were invented by Satoshi Nakamoto (real identity unknown)
in 2008

 The original blockchain idea was intended to keep track of bitcoin
transactions

 Now, most cryptocurrencies use some form of blockchain to track
transactions

 Blockchains are distributed systems that can be used to
record almost anything

 But their use has been dominated by cryptocurrency
 A central problem that any digital money faces is double-

spending
 What stops someone from spending a digital token more than once?

 Transactions are recorded in blockchains
 Two competing blockchains could record different

transactions, but the longer chain is considered the valid one

 Blockchains are built by recording transactions along with other
data that hashes in a specified pattern
 Usually, a hash value with a certain number of zeroes at the beginning

 It's easy to check that the transaction has the right hash value
 But it's computationally difficult to generate data that has a hash

with a certain number of zeroes at the beginning
 And that's what mining is: Trying random strings until something

has the right hash value
 Since a large number of strings will have the right hash value, an

entity with more than 50% of the computational power working
on a blockchain network could outpace everyone else writing
transactions, taking control of it

 Blockchains are trying to solve the same problem we talked about
with Byzantine generals: consensus

 However, the goal isn't to retrieve data efficiently
 The goal is to make a record that's hard to dispute
 Even if there are malicious actors who want to lie about the transactions

 Block time is how long it takes for the network to add a block,
recording a set of transactions
 About 12 seconds in Ethereum
 About 10 minutes in Bitcoin

 Blockchains can also be used to record ownership of digital items
 Like the non-fungible tokens (NFTs) that people went crazy over for a few

months

 Most current blockchains use proof-of-work to show that the blocks are valid
 Ethereum switched over to proof-of-stake, which is estimated to consume only 0.005%

of the power needed by Bitcoin
 Proof-of-work requires huge computational effort to find a string whose hash

starts with enough zeroes
 A 2024 review from the Institut Polytechnique de Paris estimates that Bitcoin

mining uses about the same power as Poland
 Best estimates suggest that a single Bitcoin transaction uses hundreds of

thousands as times as much energy as a Visa transaction
 Blockchains are often structured to require more computational effort when

more people are mining
 There's a real environmental cost as well as the use of electricity that could be

used for practical things

 Review up to Exam 1

 Work on Assignment 7
 Due Thursday before midnight!

 No class on Friday!

	COMP 3400
	Last time
	Questions?
	Assignment 7
	Reliable Storage and Location
	Reliable data storage
	Google File System
	Illustration of GFS
	Distributed hash tables
	Chord DHT
	Files in Chord DHT
	Consensus in Distributed Systems
	State machines
	Consensus
	Failure
	Byzantine generals
	More on Byzantine generals
	Limits on consensus
	The 1/3 limit
	Practical Byzantine fault tolerance
	Blockchains
	Blockchains
	Double-spending
	Proof-of-work
	Why blockchains?
	Why not blockchains?
	Ticket Out the Door
	Upcoming
	Next time…
	Reminders

