
Week 13 – Wednesday

 What did we talk about last time?
 Limits of parallelism
 Amdahl's Law
 Gustafson's Law

 Timing in distributed environments
 Clock synchronization
 Lamport timestamps
 Vector clocks

 If you want to get a file from a web server, you can go to a URL
and make an HTTP request

 Unfortunately, if that server is down or unreachable, you can't get
the file

 For this reason, distributed systems are often used to store data
 A key feature of distributed data storage is replication, keeping

multiple copies of the same data
 Replication avoids a single point of failure
 If done correctly, replication can also do load balancing, improving

performance by providing multiple sources for data

 The Google File System (GFS) is a distributed storage system
 GFS was designed to store Google's internal data, like the

data structures used for PageRank
 Files are often large, so they're broken into chunks
 Chunks are stored on chunkservers as regular files
 A master server stores a table mapping file chunks to their

locations

 Each chunk has a primary
chunkserver as well as replicas

 The chunks are identical, but the
primary chunkserver is the only
place where the chunk can be
modified
 It propagates changes to the other

chunkservers
 This redundancy makes writing to

GFS slower, even though reading is
relatively fast

 The master server periodically
sends messages to the
chunkservers to get their current
status

 GFS was designed by Google for its own purposes
 It uses a central server
 Servers keep information about each other

 What if we have no idea what servers are going to be in the
network?

 Distributed hash tables (DHT) are an approach for mapping
arbitrary objects to arbitrary servers

 DHTs are a way to organize a peer-to-peer network to avoid
query flooding

 Chord was one of the first algorithms for a DHT,
introduced in 2001

 Each node has a unique identifier (often its IP
address) that's hashed to provide a location in a
circle
 If the hash is n bits long, the DHT can support up to

2n nodes
 Most locations in the circle are empty
 Each node has a "finger table," tracking

successor elements in increasing powers of 2
away on the circle
 If the power of 2 node is missing, it tracks the next

non-missing node
 The example on the right is only for 25 = 32

nodes

 When a file is added, it's hashed
 Whichever node has that hash value (or is its

successor) is the location of that file
 On the right, node 6 is looking for a file at location

19 (the successor of 18)
 It looks at 6 + 8 = 14, which doesn't exist but has a

successor of 16
 Then it looks at 16 + 2 = 18, which doesn't exist but

has a successor of 21
 Node 21 is where the file is supposed to be

 The details get a little more complex, but the
practical result is that a file can be found with
O(log n) requests, where n is the size of the
network

 Replication is done by caching files at nodes that
were part of the lookup to find the file

 At a high level, you can think of distributed systems as state
machines

 The system contains many variables with different values that
change over time
 The idea is broader than a finite state machine, since the system is

more complex than having a single state
 In a distributed system, different nodes could have different

internal representations of these values
 If the nodes agree on a state variable's value, they have

consensus

 Reaching consensus is the goal of many distributed protocols
 To reach consensus, a protocol must have three properties:
 Termination: Every correct (non-failing) process will eventually decide on

a value
 Integrity: If every correct process proposes the same value, any correct

process must decide that value
 Agreement: All correct processes decide the same value

 Examples
 In GFS, a consensus protocol could tell any node whether a particular file

was on a particular node
 In NTP, nodes will be able to agree on synchronized time

 However, processes do fail in distributed systems
 Failure could mean making some error, crashing, going into

an infinite loop, or losing connection to the network
 Processes could even be malicious, trying to undermine the system

 Even in the face of (many?) failures, we'd like the distributed
system to reach consensus

 A common analogy used to describe this problem is the
Byzantine generals problem

 The Byzantine generals problem imagines three generals
stationed around a large city
 Only if all three generals decide to attack, they can defeat the city
 If all three generals decide to retreat, they can retreat with minimal

casualties
 But if some attack and some retreat, they're all going to get slaughtered

 The generals exchange messages with each other to see what
they want to do

 What if one general tells A that he's going to retreat and B that
he's going to attack?
 A will decide to retreat but B will go ahead and attack

 A different (but equivalent) version of the Byzantine generals
problem imagines:
 One general is the commander who decides what to do
 The other two are lieutenants who check with each other to make sure

that they got the same message from the commander
 What if there's one bad general?
 A bad commander could send retreat to one lieutenant and attack to the

other
 A bad lieutenant could receive attack from the commander but send

retreat to the other lieutenant
 A good lieutenant couldn't distinguish between those two situations

 Consensus is hard
 Failing processes can mess things up for correct processes
 Because there's limited information, a process can appear to be

correct to one part of the system and failing to another
 A Byzantine failure is exactly this kind
 There's conflicting information, and it's impossible to determine

what's reliable

 It's not an accident that the number of
generals chosen is three

 If strictly less than 1/3 of the nodes are
failing, it's possible to achieve consensus

 If we extend the problem to four generals
(three lieutenants), then generals who are
working can decide on a consensus using
majority rule

 Even a bad commander who issues
confusing orders won't mess up the system

 However, knowing what the consensus is
doesn't tell us which nodes are failing

 Also, this 1/3 limit depends on synchronous
communication

 Consensus is a pretty high bar
 Practical Byzantine fault tolerance (PBFT) tries to

make a workable system with consistency among
nodes without requiring consensus
 A client asks a primary process for some data
 The primary process asks replicas for the data
 The client considers the majority response to be correct

after getting enough responses
 It works because
 Messages are cryptographically signed
 Messages are numbered so that old messages won't be

reused
 Responses have a time limit

 We assume that less than 1/3 of the processes are
faulty, meaning that if we get messages from more
than 1/3 of the processes that agree, we assume the
response is good

 Blockchains are a form of distributed ledger
 Unlike banks, which are centralized authorities for transactions

that have occurred at the banks, blockchains try to record
transactions in a distributed way with no central authority

 Although similar ideas existed before, blockchains as we know
them were invented by Satoshi Nakamoto (real identity unknown)
in 2008

 The original blockchain idea was intended to keep track of bitcoin
transactions

 Now, most cryptocurrencies use some form of blockchain to track
transactions

 Blockchains are distributed systems that can be used to
record almost anything

 But their use has been dominated by cryptocurrency
 A central problem that any digital money faces is double-

spending
 What stops someone from spending a digital token more than once?

 Transactions are recorded in blockchains
 Two competing blockchains could record different

transactions, but the longer chain is considered the valid one

 Blockchains are built by recording transactions along with other
data that hashes in a specified pattern
 Usually, a hash value with a certain number of zeroes at the beginning

 It's easy to check that the transaction has the right hash value
 But it's computationally difficult to generate data that has a hash

with a certain number of zeroes at the beginning
 And that's what mining is: Trying random strings until something

has the right hash value
 Since a large number of strings will have the right hash value, an

entity with more than 50% of the computational power working
on a blockchain network could outpace everyone else writing
transactions, taking control of it

 Blockchains are trying to solve the same problem we talked about
with Byzantine generals: consensus

 However, the goal isn't to retrieve data efficiently
 The goal is to make a record that's hard to dispute
 Even if there are malicious actors who want to lie about the transactions

 Block time is how long it takes for the network to add a block,
recording a set of transactions
 About 12 seconds in Ethereum
 About 10 minutes in Bitcoin

 Blockchains can also be used to record ownership of digital items
 Like the non-fungible tokens (NFTs) that people went crazy over for a few

months

 Most current blockchains use proof-of-work to show that the blocks are valid
 Ethereum switched over to proof-of-stake, which is estimated to consume only 0.005%

of the power needed by Bitcoin
 Proof-of-work requires huge computational effort to find a string whose hash

starts with enough zeroes
 A 2024 review from the Institut Polytechnique de Paris estimates that Bitcoin

mining uses about the same power as Poland
 Best estimates suggest that a single Bitcoin transaction uses hundreds of

thousands as times as much energy as a Visa transaction
 Blockchains are often structured to require more computational effort when

more people are mining
 There's a real environmental cost as well as the use of electricity that could be

used for practical things

 Review up to Exam 1

 Work on Assignment 7
 Due Thursday before midnight!

 No class on Friday!

	COMP 3400
	Last time
	Questions?
	Assignment 7
	Reliable Storage and Location
	Reliable data storage
	Google File System
	Illustration of GFS
	Distributed hash tables
	Chord DHT
	Files in Chord DHT
	Consensus in Distributed Systems
	State machines
	Consensus
	Failure
	Byzantine generals
	More on Byzantine generals
	Limits on consensus
	The 1/3 limit
	Practical Byzantine fault tolerance
	Blockchains
	Blockchains
	Double-spending
	Proof-of-work
	Why blockchains?
	Why not blockchains?
	Ticket Out the Door
	Upcoming
	Next time…
	Reminders

