
Week 13 – Wednesday



 What did we talk about last time?
 Limits of parallelism
 Amdahl's Law
 Gustafson's Law

 Timing in distributed environments
 Clock synchronization
 Lamport timestamps
 Vector clocks









 If you want to get a file from a web server, you can go to a URL 
and make an HTTP request

 Unfortunately, if that server is down or unreachable, you can't get 
the file

 For this reason, distributed systems are often used to store data
 A key feature of distributed data storage is replication, keeping 

multiple copies of the same data
 Replication avoids a single point of failure
 If done correctly, replication can also do load balancing, improving 

performance by providing multiple sources for data



 The Google File System (GFS) is a distributed storage system
 GFS was designed to store Google's internal data, like the 

data structures used for PageRank
 Files are often large, so they're broken into chunks
 Chunks are stored on chunkservers as regular files
 A master server stores a table mapping file chunks to their 

locations



 Each chunk has a primary 
chunkserver as well as replicas

 The chunks are identical, but the 
primary chunkserver is the only 
place where the chunk can be 
modified
 It propagates changes to the other 

chunkservers
 This redundancy makes writing to 

GFS slower, even though reading is 
relatively fast

 The master server periodically 
sends messages to the 
chunkservers to get their current 
status



 GFS was designed by Google for its own purposes
 It uses a central server
 Servers keep information about each other

 What if we have no idea what servers are going to be in the 
network?

 Distributed hash tables (DHT) are an approach for mapping 
arbitrary objects to arbitrary servers

 DHTs are a way to organize a peer-to-peer network to avoid 
query flooding



 Chord was one of the first algorithms for a DHT, 
introduced in 2001

 Each node has a unique identifier (often its IP 
address) that's hashed to provide a location in a 
circle
 If the hash is n bits long, the DHT can support up to 

2n nodes
 Most locations in the circle are empty
 Each node has a "finger table," tracking 

successor elements in increasing powers of 2 
away on the circle
 If the power of 2 node is missing, it tracks the next 

non-missing node
 The example on the right is only for 25 = 32 

nodes



 When a file is added, it's hashed
 Whichever node has that hash value  (or is its 

successor) is the location of that file
 On the right, node 6 is looking for a file at location 

19 (the successor of 18)
 It looks at 6 + 8 = 14, which doesn't exist but has a 

successor of 16
 Then it looks at 16 + 2 = 18, which doesn't exist but 

has a successor of 21
 Node 21 is where the file is supposed to be

 The details get a little more complex, but the 
practical result is that a file can be found with 
O(log n) requests, where n is the size of the 
network

 Replication is done by caching files at nodes that 
were part of the lookup to find the file





 At a high level, you can think of distributed systems as state 
machines

 The system contains many variables with different values that 
change over time
 The idea is broader than a finite state machine, since the system is 

more complex than having a single state
 In a distributed system, different nodes could have different 

internal representations of these values
 If the nodes agree on a state variable's value, they have 

consensus



 Reaching consensus is the goal of many distributed protocols
 To reach consensus, a protocol must have three properties:
 Termination: Every correct (non-failing) process will eventually decide on 

a value
 Integrity: If every correct process proposes the same value, any correct 

process must decide that value
 Agreement: All correct processes decide the same value

 Examples
 In GFS, a consensus protocol could tell any node whether a particular file 

was on a particular node
 In NTP, nodes will be able to agree on synchronized time



 However, processes do fail in distributed systems
 Failure could mean making some error, crashing, going into 

an infinite loop, or losing connection to the network
 Processes could even be malicious, trying to undermine the system

 Even in the face of (many?) failures, we'd like the distributed 
system to reach consensus

 A common analogy used to describe this problem is the 
Byzantine generals problem



 The Byzantine generals problem imagines three generals 
stationed around a large city
 Only if all three generals decide to attack, they can defeat the city
 If all three generals decide to retreat, they can retreat with minimal 

casualties
 But if some attack and some retreat, they're all going to get slaughtered

 The generals exchange messages with each other to see what 
they want to do

 What if one general tells A that he's going to retreat and B that 
he's going to attack?
 A will decide to retreat but B will go ahead and attack



 A different (but equivalent) version of the Byzantine generals 
problem imagines:
 One general is the commander who decides what to do
 The other two are lieutenants who check with each other to make sure 

that they got the same message from the commander
 What if there's one bad general?
 A bad commander could send retreat to one lieutenant and attack to the 

other
 A bad lieutenant could receive attack from the commander but send 

retreat to the other lieutenant
 A good lieutenant couldn't distinguish between those two situations



 Consensus is hard
 Failing processes can mess things up for correct processes
 Because there's limited information, a process can appear to be 

correct to one part of the system and failing to another
 A Byzantine failure is exactly this kind
 There's conflicting information, and it's impossible to determine 

what's reliable



 It's not an accident that the number of 
generals chosen is three

 If strictly less than 1/3 of the nodes are 
failing, it's possible to achieve consensus

 If we extend the problem to four generals 
(three lieutenants), then generals who are 
working can decide on a consensus using 
majority rule

 Even a bad commander who issues 
confusing orders won't mess up the system

 However, knowing what the consensus is 
doesn't tell us which nodes are failing

 Also, this 1/3 limit depends on synchronous 
communication



 Consensus is a pretty high bar
 Practical Byzantine fault tolerance (PBFT) tries to 

make a workable system with consistency among 
nodes without requiring consensus
 A client asks a primary process for some data
 The primary process asks replicas for the data
 The client considers the majority response to be correct 

after getting enough responses
 It works because
 Messages are cryptographically signed
 Messages are numbered so that old messages won't be 

reused
 Responses have a time limit

 We assume that less than 1/3 of the processes are 
faulty, meaning that if we get messages from more 
than 1/3 of the processes that agree, we assume the 
response is good





 Blockchains are a form of distributed ledger
 Unlike banks, which are centralized authorities for transactions 

that have occurred at the banks, blockchains try to record 
transactions in a distributed way with no central authority

 Although similar ideas existed before, blockchains as we know 
them were invented by Satoshi Nakamoto (real identity unknown) 
in 2008

 The original blockchain idea was intended to keep track of bitcoin 
transactions

 Now, most cryptocurrencies use some form of blockchain to track 
transactions



 Blockchains are distributed systems that can be used to 
record almost anything

 But their use has been dominated by cryptocurrency
 A central problem that any digital money faces is double-

spending
 What stops someone from spending a digital token more than once?

 Transactions are recorded in blockchains
 Two competing blockchains could record different 

transactions, but the longer chain is considered the valid one



 Blockchains are built by recording transactions along with other 
data that hashes in a specified pattern
 Usually, a hash value with a certain number of zeroes at the beginning

 It's easy to check that the transaction has the right hash value
 But it's computationally difficult to generate data that has a hash 

with a certain number of zeroes at the beginning
 And that's what mining is: Trying random strings until something 

has the right hash value
 Since a large number of strings will have the right hash value, an 

entity with more than 50% of the computational power working 
on a blockchain network could outpace everyone else writing 
transactions, taking control of it



 Blockchains are trying to solve the same problem we talked about 
with Byzantine generals: consensus

 However, the goal isn't to retrieve data efficiently
 The goal is to make a record that's hard to dispute
 Even if there are malicious actors who want to lie about the transactions

 Block time is how long it takes for the network to add a block, 
recording a set of transactions
 About 12 seconds in Ethereum
 About 10 minutes in Bitcoin

 Blockchains can also be used to record ownership of digital items
 Like the non-fungible tokens (NFTs) that people went crazy over for a few 

months



 Most current blockchains use proof-of-work to show that the blocks are valid
 Ethereum switched over to proof-of-stake, which is estimated to consume only 0.005% 

of the power needed by Bitcoin
 Proof-of-work requires huge computational effort to find a string whose hash 

starts with enough zeroes
 A 2024 review from the Institut Polytechnique de Paris estimates that Bitcoin 

mining uses about the same power as Poland
 Best estimates suggest that a single Bitcoin transaction uses hundreds of 

thousands as times as much energy as a Visa transaction
 Blockchains are often structured to require more computational effort when 

more people are mining
 There's a real environmental cost as well as the use of electricity that could be 

used for practical things







 Review up to Exam 1



 Work on Assignment 7
 Due Thursday before midnight!

 No class on Friday!
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